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ABSTRACT

Motivation: Statistical phylogenetics is computationally intensive,
resulting in considerable attention meted on techniques for
parallelization. Codon-based models allow for independent rates
of synonymous and replacement substitutions and have the
potential to more adequately model the process of protein-
coding sequence evolution with a resulting increase in phylogenetic
accuracy. Unfortunately, due to the high number of codon
states, computational burden has largely thwarted phylogenetic
reconstruction under codon models, particularly at the genomic-
scale. Here, we describe novel algorithms and methods for evaluating
phylogenies under arbitrary molecular evolutionary models on
graphics processing units (GPUs), making use of the large number of
processing cores to efficiently parallelize calculations even for large
state-size models.
Results: We implement the approach in an existing Bayesian
framework and apply the algorithms to estimating the phylogeny
of 62 complete mitochondrial genomes of carnivores under a 60-
state codon model. We see a near 90-fold speed increase over
an optimized CPU-based computation and a >140-fold increase
over the currently available implementation, making this the first
practical use of codon models for phylogenetic inference over whole
mitochondrial or microorganism genomes.
Availability and implementation: Source code provided in
BEAGLE: Broad-platform Evolutionary Analysis General Likelihood
Evaluator, a cross-platform/processor library for phylogenetic
likelihood computation (http://beagle-lib.googlecode.com/). We
employ a BEAGLE-implementation using the Bayesian phylogenetics
framework BEAST (http://beast.bio.ed.ac.uk/).
Contact: msuchard@ucla.edu; a.rambaut@ed.ac.uk

1 INTRODUCTION
The startling, recent advances in sequencing technology are fueling
a concomitant increase in the scale and ambition of phylogenetic
analyses. However, this enthusiasm belies a fundamental limitation
in statistical phylogenetics: as the number of sequences increases,
the size of parameter space—specifically the number of possible
phylogenetic histories—explodes. To make matters worse, under
any modestly realistic model of sequence evolution, considerable
computational effort is required to evaluate each history. Troubling,
this effort also skyrockets with the number of sequences and
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complexity of the sequence characters from nucleotides, through
amino acids to codons. Although statistically efficient techniques
such as Markov chain Monte Carlo (MCMC) help limit computation
effort by concentrating evaluations on only those histories that
make a significant contribution to the posterior probability density,
improved MCMC methods alone cannot mitigate the non-linear
nature of the increase in computational burden. Fortunately, the
power of computers available to biologists, famously, has also been
growing exponentially with remarkable consistency (Moore, 1998)
over a similar time scale to the advances in sequencing technology.
One aspect of this is the ubiquitous availability of multi-processor
and multi-core computers, inviting novel parallel algorithms to make
efficient use of these machines.

The last decade has seen a rapid adoption of parallel computing
for molecular phylogenetics (Altekar et al., 2004; Feng et al.,
2003, 2007; Keane et al., 2005; Minh et al., 2005; Moret et al.,
2002; Schmidt et al., 2002; Stamatakis et al., 2005). Concentrating
largely on advances for clusters of networked computers, researchers
mix and match from a number of parallelization approaches. The
first distributes separate histories across multiple computers or
CPU cores for independent evaluation (Keane et al., 2005; Moret
et al., 2002; Schmidt et al., 2002). The second partitions the
sequence data into conditionally independent blocks for distribution
across the cluster (Feng et al., 2003; Stamatakis et al., 2005).
The third simultaneously runs multiple MCMC samplers in a
synchronized fashion (Altekar et al., 2004; Feng et al., 2003).
Recently using a data partitioning approach, Feng et al. (2007) even
demonstrate success on a tera-flop cluster, achieving almost linear
speedup with the number of nodes employed. However, cluster-
based approaches carry with them non-negligible computational
over-head in the communication between parallel processes and,
critically, linear speedup in the number of CPU processing cores
leads to considerable financial costs to purchase hardware or rent
super-computer time.

There exists, however, a much less expensive resource
available in many desktop computers, the graphics processing unit
(GPU), largely unexploited for computational statistics in biology
(Charalambous et al., 2005; Manavski and Valle, 2008). GPUs are
dedicated numerical processors designed for rendering 3D computer
graphics. In essence, they consist of hundreds of processor cores on
a single chip that can be programmed to apply the same numerical
operations simultaneously to each element of large data arrays under
a single instruction, multiple data (SIMD) paradigm. Because the
same operations, called kernels, function simultaneously, GPUs
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can achieve extremely high arithmetic intensity if one can transfer
the input data and output results onto and off of the processors
quickly. An extension to common programming languages [CUDA:
(NVIDIA, 2008)] opens up the GPU to general purpose computing,
and the computational power of these units has increased to the
stage where they can process data-intensive problems many orders
of magnitude faster than conventional CPUs.

Here, we describe novel algorithms to make efficient use of the
particular architecture of GPUs for the calculation of the likelihood
of molecular sequence data under continuous-time Markov chain
(CTMC) models of evolution. Our algorithms build upon Silberstein
et al. (2008), who demonstrate efficient on-chip memory caching
for sum–product calculations on the GPU. Our approach is
fundamentally different from previous phylogenetic parallelization,
including an exploit of GPUs (Charalambous et al., 2005), as we
exploit optimized caching, SIMD and the extremely low overhead in
spawning GPU threads to distribute individual summations over the
unobserved CTMC states within the sum–product algorithm. With
this significantly higher degree of parallelization, we demonstrate
near 90-fold increases in evaluation speed for models of codon
evolution. Codon substitution models (Goldman and Yang, 1994;
Muse and Gaut, 1994) decouple the rates of substitution between
amino acids and those between nucleotides that do not alter the
protein sequence. Such models have the potential to provide a more
accurate description of the evolution of protein-coding nucleotide
sequences (Shapiro et al., 2006) and thus more accurate phylogenetic
analyses (Ren et al., 2005), but to date have largely only been
practically employed to make inferences conditioned on a single
phylogenetic history.

2 METHODS
To harness the hundreds of processing cores available on GPUs in
phylogenetics, we introduce many-core algorithms to compute the likelihood
of n aligned molecular sequences D given a phylogenetic tree τ with n tips
and a CTMC model that characterizes sequence evolution along τ and allows
for rate variation along the alignment. To describe these novel algorithms, we
first review standard approaches to the data likelihood, Pr (D ), computation
(Felsenstein, 1981; Lange, 1997). We then highlight two time-consuming
steps in these approaches: (i) computing the probabilities of observing two
specific sequences at either end of each branch in τ and (ii) integrating over
all possible unobserved sequences at the internal nodes of τ . Finally, we
demonstrate how massive parallelization of these steps generates substantial
speedup in computing Pr (D ).

2.1 Computing the marginalized data likelihood
The data D= (D1,...,DC ) comprise C alignment columns, where column
data Dc= (Dc1,...,Dcn) for c=1,...,C contain one homologous sequence
character from each of the n taxa. Each character exists in one of S possible
states that we arbitrarily label {1,...,S}. Relating these taxa, τ is an acyclic
graph grown from n external nodes of degree 1, n−2 internal nodes of degree
3 and one root node of degree 2. Connecting these nodes are 2n−2 edges or
branches with their associated lengths T= (t1,...,t2n−2).

To keep track of these nodes and branches during computation, we require
several additional labelings. We label the root and internal nodes with integers
{1,...,n−1} starting from the root and label the tips of τ arbitrarily with
integers {1,...,n}. We let I identify the set of internal branches and E identify
the set of terminal branches of τ . For each branch b∈I, we denote the
internal node labels of the parent and child of branch b by ψ(b) and φ(b),
respectively. We use the same notation for each terminal branch b except
ψ(b) is an internal node index, while φ(b) is a tip index.

Following standard practice since Felsenstein (1981) we assume that
column data Dc are conditionally independent and identically distributed.
Thus, it suffices to compute the likelihood for only each unique Dc and
reweigh appropriately using standard data compression techniques. To ease
exposition in this section, we assume all C columns are unique. Let
s= (s1,...,sC ) where sc= (sc1,...,sc,n−1) denote the unobserved internal
node sequence states. To incorporate rate variation, we use the very popular
discretized models (Yang, 1994) that modulate the CTMC for each column
independently through a finite number of rates r∈{1,...,R}. Then, the joint
likelihood of the unobserved internal node data and the observed data at the
tips of τ given the rates r= (r1,...,rC ) becomes

Pr
(
s,D|r)= C∏

c=1

Pr
(
sc,Dc |rc

)

=
C∏

c=1

[
πsc1

∏
b∈I

P(rc)
scψ(b)scφ(b)

(tb)

×
∏
b∈E

P(rc)
scψ(b)Dcφ(b)

(tb)

]
, (1)

where π= (π1,...,πS) are the prior probabilities of the unobserved character
in each column at the root node and P(r)

sj (t) for s,j ∈{1,...,S} are the finite-
time transition probabilities of character j existing at the end of a branch
with length t given character s at the start under rate r. These probabilities
derive from the rate-modulated CTMC and we discuss their calculation in a
later section. Often, π also derives from the CTMC.

Unpacking Equation (1), if we guess the internal node states and rate
for each column, the likelihood reduces simply to the product of character
transition probabilities over all of the branches in τ and across all columns.
However, s and r are never observed and, hence, we sit with a further time-
consuming integration. Letting Pr (r ) represent the prior probability mass
function over rates, we recover the observed data likelihood by summing
over all possible internal node states and column rates,

Pr (D )=
C∏

c=1

⎡
⎣ R∑

r=1

⎛
⎝ S∑

s1=1

···
S∑

sn−1=1

πcs1

∏
b∈I

P(r)
scψ(b)scφ(b)

(tb)

×
∏
b∈E

P(r)
scψ(b)Dcφ(b)

(tb)

)
Pr (r )

]
. (2)

2.1.1 Traditional computation Judiciously distributing the sum over s
within the product over branches in Equation (2) reduces its computational
complexity from exponential to polynomial in n and forms a sum–product
algorithm, also known as Felsenstein’s Peeling algorithm in phylogenetics
(Felsenstein, 1981). This approach invites a post-order traversal of the
internal nodes in τ and the computation of a recursive function at each node
that depends only on its immediate children; to the best of our knowledge,
all likelihood-based phylogenetic software exploits this recursion.

Let Fu={Furcs} be an R×C×S matrix of forward, often called partial
or fractional, likelihoods at node u. Element Fus is the probability of the
observed data at only the tips that descend from node u, given that the state
of u is s. If u is a tip, then we initialize partial likelihoods via equation
Fus=1{s=Du}. In case of missing or ambiguous data, Du denotes the subset
of possible character states, and forward likelihoods are set to Fus=1{s∈Du}.
During post-order, or upward, traversal of τ , we compute forward likelihoods
for each internal node u using the recursion

Furcs=
⎡
⎣ S∑

j=1

Fφ(b1)rcj×P(r)
sj (tb1 )

⎤
⎦

×
⎡
⎣ S∑

j=1

Fφ(b2)rcj×P(r)
sj (tb2 )

⎤
⎦, (3)
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Algorithm 1 GPU-based parallel computation of partial-likelihoods
Furcs through peeling

1: Define COLUMN_BLOCK_SIZE (CBS)← number of
columns processed per thread block

2: Define STATE_BLOCK_SIZE (SBS)← number of states
processed per inner-loop

3: for all thread blocks (rate class r=1,...,R and
column-block =1,...,�C/CBS�) in parallel do

4: Using each thread s=1,...,S and c=1,...,CBS in block,
prefetch child partial likelihoods Fφ(b1)rcs and Fφ(b2)rcs for
CBS columns (reused by all threads in block)

5: Initialize F(1)
urcs←0 and F(2)

urcs←0
6: for j=1 to S in SBS increments do

7: Pre-fetch transition probabilities P(r)
sj (tb1

) and P(r)
sj (tb2

)
for SBS states (reused by all threads in block)

8: F(1)
urcs +=Fφ(b1)rcs×P(r)

sj (tb1
)

9: F(2)
urcs +=Fφ(b2)rcs×P(r)

sj (tb2
)

10: end for
11: end for
12: Return F(1)

urcs×F(2)
urcs

where b1 and b2 are indices of the branches descending from node u and
φ(b1) and φ(b2) are the corresponding children of u.

Given the final recursive computations F1rcs1 at the root, we recover the
data likelihood through a final summation over the root state s1 and column
rate r across all columns,

Pr (D )=
C∏

c=1

⎡
⎣ R∑

r=1

⎛
⎝ S∑

s1=1

πs1×F1rcs1

⎞
⎠Pr (r )

⎤
⎦. (4)

2.1.2 Many-core computation Computing Equation (3) for all (r,c,s) is
generally O(RCS2) but is at best order O(RCS) when both children are
tips and have unambiguous data. In either case, this high computational
cost invites parallelization. For each node u in the recursion, we propose
distributing these computations across many-core processors such that each
(r,c,s)-entry executes in its own short-lived thread. This fine scale of
parallelization differs substantially from previous approaches that partition
the columns into conditionally independent blocks and distribute the blocks
across separate processing cores and is possible because GPUs share common
memory and sport negligible costs to spawn and destroy threads, potentiating
significant speedup improvement.

Algorithm 1 outlines our implementation of Equation (3). For each (r,c,s)-
thread, the algorithm dedicates only a small portion of its code to actually
computing Furcs. Most of the work involves efficiently reading and caching
the large vectors of child forward likelihoods {Fφ(b1)rcj} and {Fφ(b2)rcj}
for j=1,...,S and even larger finite-time transition probability matrices
{P(r)

sj (tb1 )} and {P(r)
sj (tb2 )} for s,j=1,...,S to maximize computational

throughput.
To maximize data throughput with global memory, the GPU hardware

combines, or ‘coalesces’, memory read/writes of 16 consecutive threads into
a single wide memory transaction. If one cannot coalesce global memory
access, then separate memory transactions occur for each thread, resulting
in high latency. Thus, our algorithm attempts to read/write only multiples-
of-16 values at a time. One approach we take embeds models in which S
is not a multiple of 16 into a larger space by zero-padding extra entries
in the forward likelihoods and transition probabilities. For example, codon
models have a number of stop-codons (depending on the exact genetic code
being employed), which are not considered valid states within the CTMC.
This marginally reduces S<64; however, S is no longer a multiple of 16, so
we treat the stop-codons as zero-probability states, yielding the full S=64.

For nucleotide models, we simply process four (r,c,s)-entries, instead of
one, in a single thread.

On-board the GPU processing units themselves sits up to 16 KB of
memory shared between all threads grouped into a thread-block with a
maximum of 512 threads per block. Shared memory performance is between
100- to 150-fold faster than even ‘coalesced’ global memory transactions.
However, 16 KB is very small, about 5400 single-precision values. To
optimize performance, we attempt to cooperatively prefetch the largest
possible chunks of data sitting in global memory using coalesced transactions
and cache these values in shared memory, in an order that maximizes their
re-use across the threads in a block. Efficient caching requires carefully
partitioning the R×C×S threads into blocks.

Two considerations direct our thread-block construction. First, within a
rate class and column, Furcs for all states s depend on the same S forward
likelihoods for both child nodes that we wish to load from global memory
once. Second, within a rate class, Furcs for each column c depends on the
same finite-time transition probabilities. Consequentially, we construct R×
�C/CBS� thread-blocks, where �·� is the ceiling function and column-block
size (CBS) is a design constant, controlling the number of columns processed
in a block. Each block shares S×CBS threads that correspond to all states for
CBS columns. Processing multiple columns allows for the reuse of cached
finite-time transition probabilities. To this end, we choose CBS as large as
possible such that S×CBS≤512. For codon models, CBS=8.

The final complication of Algorithm 1 arises when all S2 transition
probabilities do not fit in shared memory. Instead, the threads cooperatively
prefetch columns of the matrix in peeling-block size (PBS) length chunks.
We choose PBS as large as possible without overflowing shared memory;
for codon models in single precision, PBS=8. To enable coalesced global
memory reads of the matrix columns, we exploit a column-wise flattened
representation of the finite-time transition matrices; this differs from the
standard row-wise representation in modern computing.

2.2 Computing the finite-time transition probabilities
Integral to the data likelihood are the finite-time transition probabilities
P(r)

sj (t) that characterize how state s mutates to state j along a branch
of length t at rate r. Common practice in likelihood-based phylogenetics
models the evolution of molecular characters as an irreducible, reversible
S-state CTMC with infinitesimal generator �=�(θ ). Unknown generator
parameters θ govern the behavior of the chain. For nucleotide characters,
popular parameterizations include the Hasegawa et al. (1985, HKY85) and
Lanave et al. (1984, GTR) models. Due to their computational complexity,
codon models remain less explored. Goldman and Yang (1994) and Yang
et al. (2000, M0) introduce a S=61-state model with parameters θ=
(κ,ω,π ), where κ measures the transition:transversion rate ratio, ω controls
the relative rate of non-synonymous to synonymous substitutions and π
models the stationary distribution of characters and is often fixed to empirical
estimates.

For many commonly used CTMCs and notably for all codon models,
closed-form expression for the finite-time transition probabilities given θ
do not exist and researchers exploit numerical eigendecomposition of � to
recover the probabilities through

P(r)(t)=exp(μr t�)=E×diag(eμr tλ1 ,...,eμr tλS )×E−1

=EDrtE−1, (5)

where μr is the rate multiplier for rate class r and E is the matrix
of eigenvectors of � with corresponding eigenvalues λ1,...,λS . These
eigenvalues and E are implicit functions of θ . Generally, one thinks of
matrix diagonalization as a rate-limiting step (Schadt et al., 1998) in
phylogenetic reconstruction, as diagonalization proceeds at O(S3); however,
a typical MCMC sampler attempts to update branch lengths and rate-
multipliers several orders of magnitude more often than the sampler updates
θ . Consequentially, computation effort in recomputing Equation (5) for each
rate class r and branch length t in τ far outweighs diagonalization of �.
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Fig. 1. Parallel thread block design for computing the finite-time transition
probabilities P(r)(t)=EDrtE−1 for all R rate classes along all 2n−2 branches
simultaneously. Example assumes that two prefetch blocks (shaded) span the
matrices.

2.2.1 Many-core computation While time-consuming diagonalization
occurs infrequently, constructing finite-time transition probabilities from a
diagonalization is a major bottleneck and parallelization affords advantages
in these calculations as well. Specifically, updating infinitesimal parameters
θ and one rediagonalization leads to recalculating all probabilities for each
rate class r along all 2n−2 branches in τ . Also, updating an internal node
height in τ leads to recalculating the transition probabilities for all R for the
two or three branches incident to the affected internal node.

Each of these updates starts with same eigenvector matrices and multiplies
these against differently scaled and exponentiated eigenvalues. After
precalculating the scaling factors, we perform these matrix multiplications
in parallel. Our algorithm is a natural extension to usual GPU-based matrix
multiplication kernels for arbitrary matrices A and B, see e.g. Choi et al.
(1994) and Lee et al. (1997). Since A and B are often too large to fetch
completely onto the GPU shared memory, these kernels take a block strategy.
Each block of threads performs a loop. In each loop step, the threads form the
product AsubBsub of smaller submatrices that do fit within the shared memory
of the block. The threads cooperatively prefetch all entries in Asub and Bsub.
Then, each thread computes one entry of the product; this depends on many
of the prefetched values, and so the kernel maximizes shared memory reuse.
The threads tabulate results as the loop moves the submatrices across A and
down B. We modify this algorithm in two ways. First, the threads within a
block prefetch the appropriate submatrix diagonal entries of Drt and form the
three-matrix product; and second, we greatly extend the number of blocks
to perform evaluation for all rate classes and branch lengths simultaneously.
Figure 1 depicts this blocking strategy when multiplying EDrtE−1. The figure
assumes two blocks span S; in general, we set the block dimension to 16
to ensure coalesced global memory transactions. Finally, greatly speeding
memory retrieval in the peeling algorithm, we store each resultant matrix
P(r)(t) in a column-wise, transposed representation in global memory.

2.3 Precision
Graphics rendering normally requires only 32-bit (single) precision floating
point numbers and thus most GPUs compute at single precision. While the
latest generation of GPUs can operate on 64-bit (double) precision numbers,
the precision boost comes with a performance cost because the GPU contains
far fewer double-precision units. Further, even at double precision, rounding
error can still occur while propagating the partial likelihoods up a large
tree. In general, we opt for single-precision floats and implement a rescaling
procedure when calculating the partial likelihoods to help avoid roundoff.
Our approach follows the suggestion of Yang (2000). When an under- or
over-flow occurs while computing the likelihood, we record the largest partial

likelihood Muc=maxr,s Furcs for each site c. As we peel up the internal nodes,
we replace Furcs with Furcs/Muc to help avoid roundoff. We recover the
final likelihood for each column at the root through rescaling the resulting
calculations by

∏
u Muc. In contrast to Yang (2000), we compute Muc and

rescale the partial likelihoods in parallel for each site. When S is a power
of 2, we further improve performance by performing the maximum-element
search over s through a parallel-reduction algorithm. Until another under- or
over-flow occurs, we leave Muc fixed.

2.4 Harnessing multiple GPUs
We provide support for multiple GPUs through a simple load balancing
scheme in which we divide the data columns amongst approximately equal
partitions and distribute one partition to each GPU. This scheme replicates
considerable work in calculating the same finite-time transition probabilities
on each GPU but the alternative, computing these values once on a master
GPU and then distributing, could be much slower as it requires transferring
large blocks of data from card to card; this carries extremely high latency.
Our approach also facilitates the distribution of different genomic loci to
each GPU whilst allowing each to have different models of evolution (for
example, combining mitochondrial and nuclear loci requires different genetic
codes and thus different transition probability matrices).

3 EXAMPLE
To illustrate the performance gains that GPUs afford in statistical
phylogenetics, we explore the evolutionary relationship of
mitochondrial genomes from 62 extant carnivores and a pangolin
outgroup, compiled from GENBANK. This genomic sequence
alignment contains 10 860 nt columns that code for 12 mitochondrial
proteins and when translated into a 60-state vertebrate mitochondrial
codon model, yields an impressive 3620 columns, of which 3600 are
unique. Conducting a phylogenetic analysis on such an extensive
dataset using a codon substitution model would previously be
considered computationally foolhardy.

Figure 2 displays the tree for these carnivores that we infer
from a Bayesian analysis under the M0 codon model (Goldman
and Yang, 1994) with a 4-class discrete-
 model for rate variation
(Yang, 1994) and relaxed molecular clock (Drummond et al., 2006).
This analysis uses GPU-enabled calculations through MCMC to
draw 25 million random samples from the joint posterior of both
an unknown phylogeny and unknown parameters characterizing
the substitution model. The resulting phylogeny is compatible
with the current understanding of the familial relationships of
Carnivora and importantly helps resolve relationships within
the Arctoidea. This infraorder within the caniform (dog-like)
carnivores comprises the Ursidae (bears), Musteloidea (weasles,
raccoons, skunks and red panda) and the Pinnipedia (seals and
walruses) and the branching order has been debated. Delisle and
Strobeck (2005) entertain a nucleotide-based analysis of a smaller
dataset of the same 12 genes and show marginal support for
either the grouping of Pinnipedia and Ursidae or Musteloidea
and Uridae (depending on whether a Bayesian or maximum
likelihood approach, respectively, is employed). When run under
a conventional GTR nucleotide model, our alignment also yields
the Pinnipedia and Ursidae grouping but with less than emphatic
support (posterior probability 0.79). However, with the codon model,
the same data proffer significant support (posterior probability 0.97)
for the Pinnipedia and Musteloidea grouping, a relationship also
found for nuclear markers (Flynn et al., 2000; Yu et al., 2004)
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Fig. 2. Reconstructed codon-based majority clade consensus tree of 62
carnivore mitochondrial protein-coding sequences with the long-tailed
pangolin (Manis tetradactyla) as an outgroup. We label clades with posterior
probabilities except where they approach 1 and color branches to reflect
relative rates of molecular evolution (red/faster, blue/slower) under a relaxed
clock.

Table 1. Codon substitution model parameter estimates for 62 extant
carnivores and the pangolin outgroup

Posterior 95% Bayesian
mean credible interval

Tree height 4.2 (2.5–5.5)
Transition:transversion ratio κ 12.1 (11.7–12.4)
dN/dS ratio ω 0.0274 (0.0265–0.0284)
Rate variation dispersion α 1.55 (1.48–1.62)
Relaxed clock deviation σ 0.28 (0.16–0.74)

and ‘supertree’ approaches that attempt to synthesize available
phylogenetic knowledge (Bininda-Emonds et al., 1999).

Table 1 reports the marginal posterior estimates for the tree height
in expected substitutions, the transition:transversion rate ratio κ , the
non-synonymous:synonymous rate ratio ω, rate variation dispersion
α and relaxed clock deviation σ . These estimates demonstrate the
high overall rate of synonymous substitution, suggesting that these
changes may be saturating faster than amino acid replacement
substitutions, an effect not adequately modeled at the nucleotide
level. The codon model employed here does allow different rates for
synonymous and replacement substitutions and this helps to explain
the congruence of the resulting tree with that of nuclear genes that
evolve at a slower rate.
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We perform this codon-based analysis on a standard desktop PC
sporting a 3.2 GHz Intel Core 2 Extreme (QX9770) CPU and 8 GB
of 1.6 GHz DDR3 RAM. This CPU is the fastest available at the
end of 2008 and, together with the high-end RAM, maximizes the
speed at which the Java and C implementations run to provide a
benchmark comparison. We equipped the desktop PC with three
NVIDIAGTX280 cards each of which carries a single GPU with 240
processing cores running at 1.3 GHz and 1 GB of RAM. Exploiting
all three GPUs, our analysis only requires 64 h to run.

Figure 3 compares runtime speeds using all three GPUs, a single
GPU and Java and C implementations. For codon models, the
C version is not available in the current BEAST release but our
C implementation provides only a 1.6-fold speed increase over
Java. To make these comparisons in reasonable time, we run
short MCMC chains of 10 000 steps. Between the three GPUs
and single GPU for the codon model, we observe a slightly
<3-fold improvement. This factor compares well with the theoretical
maximum, identifying that the replicated work in recomputing
the finite-time transition probabilities is not a burden when fitting
models with large state spaces. Between the three GPUs and
the current BEAST implementation, we observe an over 140-fold
improvement (a 90-fold improvement over the C implementation).
One major difference between the default computations on the
GPU and the CPU implementations is the precision, as modern
CPUs provide double-precision at full performance. Fortunately,
the GTX280 GPU also contains a very limited number (30) of
double precision floating point units and it is possible to exploit
double precision on the GPU, but at a performance cost. For the
three GPU configuration, this cost is also ∼3-fold. To compute this
data example in double precision requires more than the 1 GB of
RAM available on a single card so we are unable to replicate this
experiment using a single GPU. This is a limitation of our particular
hardware; cards with 4 GB of RAM are now available. However,
for this dataset, the performance hit comes with no scientific gain;
posterior estimates at both double- and single precision remain
unchanged.
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One important scaling dimension of the parallelization is model
state-space size S. We reanalyze the carnivore alignment at the
nucleotide level using the GTR model for nucleotide substitution.
For nucleotides, S=4 and we expect the speedup that the GPUs
afford to become much more modest. However, we still observe
∼20-fold (three GPUs) and 12-fold (single GPU) performance
improvements at single-precision, and single- and double-precision
MCMC chains return the same estimates. These substantial
increases definitely warrant using the GPUs even for small state
spaces.

Two other scaling dimensions of practical concern are the
numbers of alignment columns C and of taxa N . For very small
C, the overhead in transferring data onto and off of the GPU
may outweigh the computational benefit; performance should then
rapidly improve to a point where the parallel resources on the
GPU become fully occupied. After this saturation point, we suspect
only moderate performance increase as C grows. The former cross-
over point is critical in choosing whether or not to attempt a
GPU analysis and the latter provides guidance in splitting datasets
across multiple GPUs. On the other hand, changing N should
have a much less pronounced effect with one additional taxon
introducing one internal nodes and two branches to the phylogeny.
Figure 4 reports how performance scales when analyzing 1–3600
unique codon alignment columns for all 62 carnivores and 200
columns for 3–62 taxa. Interestingly, even for a single codon
column, the GPU implementation runs over 10-fold faster due to
the performance gains in our parallel calculation of the finite-time
transition probabilities. For this codon model, the saturation point
occurs around 500 unique columns; therefore, optimal performance
gains arise from distributing several hundred columns to each GPU
in a multi-GPU system.

4 DISCUSSION
The many-core algorithms we present in this article capably provide
several orders of magnitude speedup in computing phylogenetic
likelihoods. Given our algorithm design, performance is most

impressive for larger state-space CTMCs, such as codon models.
However, even nucleotide models demonstrate marked speed
improvements, and our algorithms remain beneficial for small state
spaces as well.

Codon models are particularly attractive as they can model the
process of natural selection acting on different parts of the gene but
are currently too prohibitively slow for use in inferring evolutionary
relationships for non-trivial alignments. Through GPU computing,
we are now able to infer the relationship among 62 carnivores using
the M0 codon model applied to the entire protein-coding mtDNA
genome. For this example, our algorithms compute nearly 150-fold
faster than the currently available methods in the BEAST sampler.
Using extrapolation to put this number in perspective, the current
BEAST implementation would require 1.1 uninterrupted years to
complete a 25 million MCMC sample run on our desktop PC,
compared with the 64 h we endured.

For researchers looking to improve computational speed, one
option is simply to purchase more computers of the same
performance and link them into a cluster. At best this provides a
linear speedup in speed proportional to the cost of each additional
system. Even ignoring the costs of maintenance, space or air
conditioning for such an increasingly large system, we suggest that
upgrading the existing system with the currently available GPU
boards could provide a similar performance at a fraction of the price.
However, if budget is of limited concern, it is obviously possible to
combine these approaches and equip cluster-computer nodes with
GPU processing as well.

While our specific implementation of these algorithms is within
a Bayesian framework, maximum likelihood inference requires
the same calculations and a large number of software packages
could benefit from the utilization of GPU computation. Indeed,
we envisage the possibility and desirability of producing a
general-purpose library and application programming interface
(API) that abstracts the exact hardware implementation from the
calling software package. In this way, improvements to these
algorithms could be made or they could be implemented on
other many-core hardware architecture, and all the supported
packages would benefit. To this end, we have started an open
source library, BEAGLE: Broad-platform Evolutionary Analysis
General Likelihood Evaluator, that provides both an API and
implementations in Java, C and for CUDA-based GPUs.
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